Most invariance-based self-supervised methods rely on single object-centric images (e.g., ImageNet images) for pretraining, learning invariant representations from geometric transformations. However, when images are not object-centric, the semantics of the image can be significantly altered due to cropping. Furthermore, as the model becomes insensitive to geometric transformations, it may struggle to capture location information. For this reason, we propose a Geometric Transformation Sensitive Architecture designed to learn features that are sensitive to geometric transformations, specifically focusing on four-fold rotation, random crop, and multi-crop. Our method encourages the student to be sensitive by using targets that are sensitive to those transforms via pooling and rotating of the teacher feature map and predicting rotation. Additionally, as training insensitively to multi-crop encourages local-to-global correspondence, the model can capture long-term dependencies. We use patch correspondence loss to encourage correspondence between patches with similar features, instead of enforcing correspondence between views of the image. This approach allows us to capture long-term dependencies in a more appropriate way. Our approach demonstrates improved performance when using non-object-centric images as pretraining data compared to other methods that learn geometric transformation-insensitive representations. We surpass the DINO baseline in tasks including image classification, semantic segmentation, detection, and instance segmentation with improvements of 4.9 $Top-1 Acc$, 3.3 $mIoU$, 3.4 $AP^b$, and 2.7 $AP^m$. Code and pretrained models are publicly available at: https://github.com/bok3948/GTSA


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
18+阅读 · 2021年6月10日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员