Large Language Models (LLMs) increasingly serve as research assistants, yet their reliability in scholarly tasks remains under-evaluated. In this work, we introduce PaperAsk, a benchmark that systematically evaluates LLMs across four key research tasks: citation retrieval, content extraction, paper discovery, and claim verification. We evaluate GPT-4o, GPT-5, and Gemini-2.5-Flash under realistic usage conditions-via web interfaces where search operations are opaque to the user. Through controlled experiments, we find consistent reliability failures: citation retrieval fails in 48-98% of multi-reference queries, section-specific content extraction fails in 72-91% of cases, and topical paper discovery yields F1 scores below 0.32, missing over 60% of relevant literature. Further human analysis attributes these failures to the uncontrolled expansion of retrieved context and the tendency of LLMs to prioritize semantically relevant text over task instructions. Across basic tasks, the LLMs display distinct failure behaviors: ChatGPT often withholds responses rather than risk errors, whereas Gemini produces fluent but fabricated answers. To address these issues, we develop lightweight reliability classifiers trained on PaperAsk data to identify unreliable outputs. PaperAsk provides a reproducible and diagnostic framework for advancing the reliability evaluation of LLM-based scholarly assistance systems.


翻译:大语言模型(LLMs)日益扮演研究助手的角色,但其在学术任务中的可靠性尚未得到充分评估。本文提出PaperAsk基准,系统性地评估LLMs在四项关键研究任务中的表现:文献引用检索、内容提取、论文发现与主张验证。我们在真实使用场景下——通过用户无法感知检索过程的网页界面——评估了GPT-4o、GPT-5和Gemini-2.5-Flash模型。控制实验显示存在持续性的可靠性缺陷:多参考文献查询的引用检索失败率达48-98%,章节特定内容提取失败率为72-91%,主题论文发现的F1分数低于0.32,漏检相关文献超过60%。进一步的人工分析表明,这些缺陷源于检索上下文的不可控扩展,以及LLMs倾向于优先处理语义相关文本而非遵循任务指令。在基础任务中,各LLMs表现出不同的失效行为:ChatGPT常选择拒绝响应而非承担错误风险,而Gemini则生成流畅但虚构的答案。为解决这些问题,我们基于PaperAsk数据训练了轻量级可靠性分类器以识别不可靠输出。PaperAsk为推进基于LLM的学术辅助系统可靠性评估提供了可复现的诊断框架。

0
下载
关闭预览

相关内容

论文(Paper)是专知网站核心资料文档,包括全球顶级期刊、顶级会议论文,及全球顶尖高校博士硕士学位论文。重点关注中国计算机学会推荐的国际学术会议和期刊,CCF-A、B、C三类。通过人机协作方式,汇编、挖掘后呈现于专知网站。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员