Given a non-negative $n \times n$ matrix viewed as a set of distances between $n$ points, we consider the property testing problem of deciding if it is a metric. We also consider the same problem for two special classes of metrics, tree metrics and ultrametrics. For general metrics, our paper is the first to consider these questions. We prove an upper bound of $O(n^{2/3}/\epsilon^{4/3})$ on the query complexity for this problem. Our algorithm is simple, but the analysis requires great care in bounding the variance on the number of violating triangles in a sample. When $\epsilon$ is a slowly decreasing function of $n$ (rather than a constant, as is standard), we prove a lower bound of matching dependence on $n$ of $\Omega (n^{2/3})$, ruling out any property testers with $o(n^{2/3})$ query complexity unless their dependence on $1/\epsilon$ is super-polynomial. Next, we turn to tree metrics and ultrametrics. While there were known upper and lower bounds, we considerably improve these bounds showing essentially tight bounds of $\tilde{O}(1/\epsilon )$ on the sample complexity. We also show a lower bound of $\Omega ( 1/\epsilon^{4/3} )$ on the query complexity. Our upper bounds are derived by doing a more careful analysis of a natural, simple algorithm. For the lower bounds, we construct distributions on NO instances, where it is hard to find a witness showing that these are not ultrametrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员