We introduce, motivate and study $\varepsilon$-almost collision-flat (ACFU) universal hash functions $f:\mathcal X\times\mathcal S\to\mathcal A$. Their main property is that the number of collisions in any given value is bounded. Each $\varepsilon$-ACFU hash function is an $\varepsilon$-almost universal (AU) hash function, and every $\varepsilon$-almost strongly universal (ASU) hash function is an $\varepsilon$-ACFU hash function. We study how the size of the seed set $\mathcal S$ depends on $\varepsilon,|\mathcal X|$ and $|\mathcal A|$. Depending on how these parameters are interrelated, seed-minimizing ACFU hash functions are equivalent to mosaics of balanced incomplete block designs (BIBDs) or to duals of mosaics of quasi-symmetric block designs; in a third case, mosaics of transversal designs and nets yield seed-optimal ACFU hash functions, but a full characterization is missing. By either extending $\mathcal S$ or $\mathcal X$, it is possible to obtain an $\varepsilon$-ACFU hash function from an $\varepsilon$-AU hash function or an $\varepsilon$-ASU hash function, generalizing the construction of mosaics of designs from a given resolvable design (Gnilke, Greferath, Pav{\v c}evi\'c, Des. Codes Cryptogr. 86(1)). The concatenation of an ASU and an ACFU hash function again yields an ACFU hash function. Finally, we motivate ACFU hash functions by their applicability in privacy amplification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员