We study the problem of online graph coloring for $k$-colorable graphs. The best previously known deterministic algorithm uses $\tilde{O}(n^{1-1/k!})$ colors for general $k$ and $\tilde{O}(n^{5/6})$ colors for $k = 4$, both given by Kierstead in 1998. In this paper, nearly thirty years later, we have finally made progress. Our results are summarized as follows: (1) $k \geq 5$ case. We provide a deterministic online algorithm to color $k$-colorable graphs with $\tilde{O}(n^{1-2/(k(k-1))})$ colors, significantly improving the current upper bound of $\tilde{O}(n^{1-1/k!})$ (2) $k = 4$ case. We provide a deterministic online algorithm to color $4$-colorable graphs with $\tilde{O}(n^{14/17})$ colors, improving the current upper bound of $\tilde{O}(n^{5/6})$ colors. (3) $k = 2$ case. We show that for randomized algorithms, the upper bound is $1.034 \log_2 n + O(1)$ colors and the lower bound is $\frac{91}{96} \log_2 n - O(1)$ colors. This means that we close the gap to $1.09\mathrm{x}$. With our algorithm for the $k \geq 5$ case, we also obtain a deterministic online algorithm for graph coloring that achieves a competitive ratio of $O(n / \log \log n)$, which improves the best known result of $O(n \log \log \log n / \log \log n)$ by Kierstead. For the bipartite graph case ($k = 2$), the limit of online deterministic algorithms is known: any deterministic algorithm requires $2 \log_2 n - O(1)$ colors. Our results imply that randomized algorithms can perform slightly better but still have a limit.


翻译:本文研究k-可着色图的在线图着色问题。此前已知的最佳确定性算法由Kierstead于1998年提出,对一般k值使用Õ(n^{1-1/k!})种颜色,对k=4情况使用Õ(n^{5/6})种颜色。在近三十年后的本研究中,我们终于取得了突破性进展。主要成果如下:(1)当k≥5时,我们提出一种确定性在线算法,仅需Õ(n^{1-2/(k(k-1))})种颜色即可完成k-可着色图的着色,显著改进了当前Õ(n^{1-1/k!})的上界。(2)当k=4时,我们提出一种确定性在线算法,仅需Õ(n^{14/17})种颜色即可完成4-可着色图的着色,改进了当前Õ(n^{5/6})的上界。(3)当k=2时,我们证明随机算法的上界为1.034 log₂ n + O(1)种颜色,下界为91/96 log₂ n - O(1)种颜色,这意味着我们将间隙缩小至1.09倍。基于k≥5情况的算法,我们还获得了一种竞争比为O(n/log log n)的确定性在线图着色算法,改进了Kierstead提出的最佳已知结果O(n log log log n/log log n)。对于二分图情况(k=2),确定性在线算法的极限已知:任何确定性算法都需要2 log₂ n - O(1)种颜色。我们的结果表明随机算法性能略有提升但仍存在极限。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员