The absence of large labeled datasets remains a significant challenge in many application areas of deep learning. Researchers and practitioners typically resort to transfer learning and data augmentation to alleviate this issue. We study these strategies in the context of audio retrieval with natural language queries (Task 6b of the DCASE 2022 Challenge). Our proposed system uses pre-trained embedding models to project recordings and textual descriptions into a shared audio-caption space in which related examples from different modalities are close. We employ various data augmentation techniques on audio and text inputs and systematically tune their corresponding hyperparameters with sequential model-based optimization. Our results show that the used augmentations strategies reduce overfitting and improve retrieval performance.


翻译:在许多深层学习的应用领域,缺少大型标签数据集仍然是一项重大挑战,研究人员和从业人员通常采用转移学习和数据增强的方法来缓解这一问题。我们通过自然语言查询(DCASE 2022挑战,任务6b)进行音频检索研究这些战略。我们提议的系统使用经过预先培训的嵌入模型,将项目录音和文字描述嵌入到共享的音频插播空间,其中不同模式的相关实例接近。我们采用各种关于音频和文字投入的数据增强技术,并系统调整相应的超强参数,按顺序优化模型。我们的结果显示,所使用的扩音战略减少了超配并改进了检索性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员