In massive multiple-input multiple-output (MIMO) systems, the user equipment (UE) needs to feed the channel state information (CSI) back to the base station (BS) for the following beamforming. But the large scale of antennas in massive MIMO systems causes huge feedback overhead. Deep learning (DL) based methods can compress the CSI at the UE and recover it at the BS, which reduces the feedback cost significantly. But the compressed CSI must be quantized into bit streams for transmission. In this paper, we propose an adaptor-assisted quantization strategy for bit-level DL-based CSI feedback. First, we design a network-aided adaptor and an advanced training scheme to adaptively improve the quantization and reconstruction accuracy. Moreover, for easy practical employment, we introduce the expert knowledge of data distribution and propose a pluggable and cost-free adaptor scheme. Experiments show that compared with the state-of-the-art feedback quantization method, this adaptor-aided quantization strategy can achieve better quantization accuracy and reconstruction performance with less or no additional cost. The open-source codes are available at https://github.com/zhang-xd18/QCRNet.


翻译:在大型多投入多输出系统中,用户设备(UE)需要将频道状态信息(CSI)反馈到基础站(BS),以便进行以下波束成型。但大型MIMO系统中的大型天线导致巨大的反馈管理。深入学习(DL)方法可以在UE压缩CSI,然后在BS回收,这样可以大大降低反馈成本。但压缩的CSI必须被量化为可传输的位流。在本文中,我们为Bit-level DL-基于 CSI的反馈提出一个调适或辅助的量化战略。首先,我们设计了一个网络辅助的适应适应适应调整器和一个先进的培训计划,以适应性地改进量化和重建的准确性。此外,为了便于实际使用,我们引入了数据分配的专家知识,并提出一个可插入和免费的调适配方案。实验显示,与状态反馈量化方法相比,这种调适配的量化战略可以实现更好的四分精确度,而重建业绩则没有额外的开放成本。 MAGGI/CRQ。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月1日
Arxiv
0+阅读 · 2022年12月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员