Efficient exploration is crucial in cooperative multi-agent reinforcement learning (MARL), especially in sparse-reward settings. However, due to the reliance on the unimodal policy, existing methods are prone to falling into the local optima, hindering the effective exploration of better policies. Furthermore, in sparse-reward settings, each agent tends to receive a scarce reward, which poses significant challenges to inter-agent cooperation. This not only increases the difficulty of policy learning but also degrades the overall performance of multi-agent tasks. To address these issues, we propose a Consistency Policy with Intention Guidance (CPIG), with two primary components: (a) introducing a multimodal policy to enhance the agent's exploration capability, and (b) sharing the intention among agents to foster agent cooperation. For component (a), CPIG incorporates a Consistency model as the policy, leveraging its multimodal nature and stochastic characteristics to facilitate exploration. Regarding component (b), we introduce an Intention Learner to deduce the intention on the global state from each agent's local observation. This intention then serves as a guidance for the Consistency Policy, promoting cooperation among agents. The proposed method is evaluated in multi-agent particle environments (MPE) and multi-agent MuJoCo (MAMuJoCo). Empirical results demonstrate that our method not only achieves comparable performance to various baselines in dense-reward environments but also significantly enhances performance in sparse-reward settings, outperforming state-of-the-art (SOTA) algorithms by 20%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员