Autonomous Mobile Robots (AMRs) have become indispensable in industrial applications due to their operational flexibility and efficiency. Navigation serves as a crucial technical foundation for accomplishing complex tasks. However, navigating AMRs in dense, cluttered, and semi-structured environments remains challenging, primarily due to nonholonomic vehicle dynamics, interactions with mixed static/dynamic obstacles, and the non-convex constrained nature of such operational spaces. To solve these problems, this paper proposes an Improved Sequential Model Predictive Control (ISMPC) navigation framework that systematically reformulates navigation tasks as sequential switched optimal control problems. The framework addresses the aforementioned challenges through two key innovations: 1) Implementation of a Multi-Directional Safety Rectangular Corridor (MDSRC) algorithm, which encodes the free space through rectangular convex regions to avoid collision with static obstacles, eliminating redundant computational burdens and accelerating solver convergence; 2) A sequential MPC navigation framework that integrates corridor constraints with barrier function constraints is proposed to achieve static and dynamic obstacle avoidance. The ISMPC navigation framework enables direct velocity generation for AMRs, simplifying traditional navigation algorithm architectures. Comparative experiments demonstrate the framework's superiority in free-space utilization ( an increase of 41.05$\%$ in the average corridor area) while maintaining real-time computational performance (average corridors generation latency of 3 ms).
翻译:自主移动机器人凭借其操作灵活性与高效性,已成为工业应用中不可或缺的组成部分。导航作为实现复杂任务的关键技术基础,在密集、杂乱且半结构化的环境中仍面临严峻挑战,主要源于非完整车辆动力学特性、静态/动态混合障碍物的交互作用以及此类操作空间的非凸约束特性。为解决这些问题,本文提出一种改进型序列模型预测控制导航框架,将导航任务系统重构为序列切换最优控制问题。该框架通过两项核心创新应对上述挑战:1)设计多向安全矩形走廊算法,通过矩形凸区域编码自由空间以规避静态障碍物,消除冗余计算负担并加速求解器收敛;2)提出融合走廊约束与屏障函数约束的序列MPC导航框架,实现静态与动态障碍物的协同避障。该ISMPC导航框架可直接生成自主移动机器人的运动速度指令,简化了传统导航算法的架构体系。对比实验表明,该框架在保持实时计算性能(平均走廊生成延迟3毫秒)的同时,显著提升了自由空间利用率(平均走廊面积增加41.05%)。