Helmholtz decompositions of the elastic fields open up new avenues for the solution of linear elastic scattering problems via boundary integral equations (BIE) [Dong, Lai, Li, Mathematics of Computation,2021]. The main appeal of this approach is that the ensuing systems of BIE feature only integral operators associated with the Helmholtz equation. However, these BIE involve non standard boundary integral operators that do not result after the application of either the Dirichlet or the Neumann trace to Helmholtz single and double layer potentials. Rather, the Helmholtz decomposition approach leads to BIE formulations of elastic scattering problems with Neumann boundary conditions that involve boundary traces of the Hessians of Helmholtz layer potential. As a consequence, the classical combined field approach applied in the framework of the Helmholtz decompositions leads to BIE formulations which, although robust, are not of the second kind. Following the regularizing methodology introduced in [Boubendir, Dominguez, Levadoux, Turc, SIAM Journal on Applied Mathematics 2015] we design and analyze novel robust Helmholtz decomposition BIE for the solution of elastic scattering that are of the second kind in the case of smooth scatterers in two dimensions. We present a variety of numerical results based on Nystrom discretizations that illustrate the good performance of the second kind regularized formulations in connections to iterative solvers.


翻译:弹性场的外壳分解为通过边界整体方程式(BIE)解决线性弹性散射问题开辟了新的途径[Dong、Lai、Li、Computation数学,2021]。这一方法的主要吸引力是,BIE随后的系统仅具有与Helmholtz等式相关的整体操作者。然而,这些BIE涉及非标准的边界整体操作者,在应用Drichlet或Neumann追踪Helmholtz单层和双层潜力之后,这些操作者没有产生解决线性弹性散射问题的新途径。相反,Helmholtz脱位方法导致BIE对Neumann边界条件的弹性散射问题作出BIEE的配方,其中涉及Helmholtz层潜力的赫斯人的边界痕迹。因此,在Helmholtz二次内应用的经典组合组合场方法导致BIEEEE的第二层配置,虽然是稳健的,但并不是第二层的。在2015年的Simalalimal、Dalimalalal delal Ex的Sal Exmal 和Salibalalalal Exal 上, 的Salibismal decommal 的Salibal Procial delismal maism Procial 的系统,在2015年的常规化方法中,在Sebismalmalmalismaldaldaldaldaldald 上,在2015年版本中采用了Salmaldaldald delviewdismbismbism 和Sebism 和Sildal 的Sal delvialdal Procal Procal Probismal Procal del del 上, 在2015年的常规版的Sal commal delismal上,在Sal上,在Sal上,在Sal上,在Sal上,在Sal del上,在Sal del上,在Sal del上,在Sal delismaldaldal del delismal del上,在2015

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月29日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员