Given the nonlinearity of the interaction between weather and soil variables, a novel deep neural network regressor (DNNR) was carefully designed with considerations to the depth, number of neurons of the hidden layers, and the hyperparameters with their optimizations. Additionally, a new metric, the average of absolute root squared error (ARSE) was proposed to address the shortcomings of root mean square error (RMSE) and mean absolute error (MAE) while combining their strengths. Using the ARSE metric, the random forest regressor (RFR) and the extreme gradient boosting regressor (XGBR), were compared with DNNR. The RFR and XGBR achieved yield errors of 0.0000294 t/ha, and 0.000792 t/ha, respectively, compared to the DNNR(s) which achieved 0.0146 t/ha and 0.0209 t/ha, respectively. All errors were impressively small. However, with changes to the explanatory variables to ensure generalizability to unforeseen data, DNNR(s) performed best. The unforeseen data, different from unseen data, is coined to represent sudden and unexplainable change to weather and soil variables due to climate change. Further analysis reveals that a strong interaction does exist between weather and soil variables. Using precipitation and silt, which are strong-negatively and strong-positively correlated with yield, respectively, yield was observed to increase when precipitation was reduced and silt increased, and vice-versa.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员