The growing dependence of software projects on external libraries has generated apprehensions regarding the security of these libraries because of concealed vulnerabilities. Handling these vulnerabilities presents difficulties due to the temporal delay between remediation and public exposure. Furthermore, a substantial fraction of open-source projects covertly address vulnerabilities without any formal notification, influencing vulnerability management. Established solutions like OWASP predominantly hinge on public announcements, limiting their efficacy in uncovering undisclosed vulnerabilities. To address this challenge, the automated identification of vulnerability-fixing commits has come to the forefront. In this paper, we present VFFINDER, a novel graph-based approach for automated silent vulnerability fix identification. VFFINDER captures structural changes using Abstract Syntax Trees (ASTs) and represents them in annotated ASTs. To precisely capture the meaning of code changes, the changed code is represented in connection with the related unchanged code. In VFFINDER, the structure of the changed code and related unchanged code are captured and the structural changes are represented in annotated Abstract Syntax Trees (aAST). VFFINDER distinguishes vulnerability-fixing commits from non-fixing ones using attention-based graph neural network models to extract structural features expressed in aASTs. We conducted experiments to evaluate VFFINDER on a dataset of 11K+ vulnerability fixing commits in 507 real-world C/C++ projects. Our results show that VFFINDER significantly improves the state-of-the-art methods by 272-420% in Precision, 22-70% in Recall, and 3.2X-8.2X in F1. Especially, VFFINDER speeds up the silent fix identification process by up to 121% with the same effort reviewing 50K LOC compared to the existing approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月31日
Arxiv
0+阅读 · 2023年10月30日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员