Integrated sensing and communication (ISAC) is a key enabler for low-altitude wireless networks (LAWNs), providing simultaneous environmental perception and data transmission in complex aerial scenarios. By combining heterogeneous sensing modalities such as visual, radar, lidar, and positional information, multimodal ISAC can improve both situational awareness and robustness of LAWNs. However, most existing multimodal fusion approaches use static fusion strategies that treat all modalities equally and cannot adapt to channel heterogeneity or time-varying modality reliability in dynamic low-altitude environments. To address this fundamental limitation, we propose a mixture-of-experts (MoE) framework for multimodal ISAC in LAWNs. Each modality is processed by a dedicated expert network, and a lightweight gating module adaptively assigns fusion weights according to the instantaneous informativeness and reliability of each modality. To improve scalability under the stringent energy constraints of aerial platforms, we further develop a sparse MoE variant that selectively activates only a subset of experts, thereby reducing computation overhead while preserving the benefits of adaptive fusion. Comprehensive simulations on three typical ISAC tasks in LAWNs demonstrate that the proposed frameworks consistently outperform conventional multimodal fusion baselines in terms of learning performance and training sample efficiency.
翻译:集成感知与通信(ISAC)是低空无线网络(LAWNs)的关键使能技术,能够在复杂的空中场景中同时实现环境感知与数据传输。通过融合视觉、雷达、激光雷达及位置信息等异构感知模态,多模态ISAC可以提升低空无线网络的态势感知能力与鲁棒性。然而,现有的大多数多模态融合方法采用静态融合策略,对所有模态进行同等处理,无法适应动态低空环境中的信道异构性或时变的模态可靠性。为应对这一根本性局限,本文提出一种面向低空无线网络多模态ISAC的专家混合(MoE)框架。每个模态由专用的专家网络处理,并通过轻量化的门控模块根据各模态的瞬时信息量与可靠性自适应分配融合权重。为提升在航空平台严格能量约束下的可扩展性,我们进一步开发了一种稀疏MoE变体,该变体仅选择性激活部分专家,从而在保留自适应融合优势的同时降低计算开销。在低空无线网络三种典型ISAC任务上的综合仿真表明,所提框架在学习性能和训练样本效率方面均持续优于传统的多模态融合基线方法。