Accurately modeling and inferring solutions to time-dependent partial differential equations (PDEs) over extended horizons remains a core challenge in scientific machine learning. Traditional full rollout (FR) methods, which predict entire trajectories in one pass, often fail to capture the causal dependencies and generalize poorly outside the training time horizon. Autoregressive (AR) approaches, evolving the system step by step, suffer from error accumulation, limiting long-term accuracy. These shortcomings limit the long-term accuracy and reliability of both strategies. To address these issues, we introduce the Physics-Informed Time-Integrated Deep Operator Network (PITI-DeepONet), a dual-output architecture trained via fully physics-informed or hybrid physics- and data-driven objectives to ensure stable, accurate long-term evolution well beyond the training horizon. Instead of forecasting future states, the network learns the time-derivative operator from the current state, integrating it using classical time-stepping schemes to advance the solution in time. Additionally, the framework can leverage residual monitoring during inference to estimate prediction quality and detect when the system transitions outside the training domain. Applied to benchmark problems, PITI-DeepONet shows improved accuracy over extended inference time horizons when compared to traditional methods. Mean relative $\mathcal{L}_2$ errors reduced by 84% (vs. FR) and 79% (vs. AR) for the one-dimensional heat equation; by 87% (vs. FR) and 98% (vs. AR) for the one-dimensional Burgers equation; and by 42% (vs. FR) and 89% (vs. AR) for the two-dimensional Allen-Cahn equation. By moving beyond classic FR and AR schemes, PITI-DeepONet paves the way for more reliable, long-term integration of complex, time-dependent PDEs.
翻译:在科学机器学习中,准确建模并推断时间依赖偏微分方程在长时间范围内的解仍是一个核心挑战。传统的全展开方法一次性预测整个轨迹,往往难以捕捉因果依赖关系,且在训练时间范围外泛化能力差。自回归方法逐步演化系统,但受误差累积影响,限制了长期精度。这些缺陷共同制约了两种策略的长期准确性与可靠性。为解决这些问题,我们提出了物理信息时间积分深度算子网络,这是一种双输出架构,通过完全物理信息或混合物理与数据驱动的目标进行训练,以确保在远超训练时间范围的情况下实现稳定、准确的长期演化。该网络不直接预测未来状态,而是从当前状态学习时间导数算子,并利用经典时间步进方案对其进行积分以推进时间解。此外,该框架可在推理过程中利用残差监测来估计预测质量,并检测系统何时超出训练域。在基准问题上的应用表明,与传统方法相比,PITI-DeepONet在扩展推理时间范围内展现出更高的精度。对于一维热传导方程,平均相对$\mathcal{L}_2$误差降低了84%(相对于全展开方法)和79%(相对于自回归方法);对于一维Burgers方程,降低了87%(相对于全展开方法)和98%(相对于自回归方法);对于二维Allen-Cahn方程,降低了42%(相对于全展开方法)和89%(相对于自回归方法)。通过超越经典的全展开与自回归方案,PITI-DeepONet为复杂时间依赖偏微分方程的更可靠长期积分开辟了新途径。