The probability integral transform (PIT) of a random variable X with distribution function F_X is a uniformly distributed random variable U = F_X(X). We define the angular probability integral transform (APIT) as {\theta}_U = 2{\pi}U = 2{\pi}F_X(X), which corresponds to a uniformly distributed angle on the unit circle. For circular (angular) random variables, the sum of absolutely continuous independent circular uniform random variables is a circular uniform random variable, that is, the circular uniform distribution is closed under summation, and it is a stable continuous distribution on the unit circle. If we consider the sum (difference) of the angular probability integral transforms of two random variables, X_1 and X_2, and test for the circular uniformity of their sum (difference), this is equivalent to test of independence of the original variables. In this study, we used a flexible family of nonnegative trigonometric sums (NNTS) circular distributions, which include the uniform circular distribution as a member of the family, to evaluate the power of the proposed independence test by generating samples from NNTS alternative distributions that could be at a closer proximity with respect to the circular uniform null distribution.
翻译:带有分布函数 F_X 的随机变量 X 的概率整体变换( PIT) 是 统一分布的随机随机随机值 U = F_X (X) 。 我们将角概率整体变换( APIT) 定义为 {theta ⁇ U = 2\pi}U = 2\pi}F_X (X), 与单位圆上统一分布的角度相对应。 对于圆形( 角) 随机变量来说, 绝对连续独立的单向单向任意任意随机变数之和是一个循环统一随机变数, 即圆形统一分布在对齐中封闭, 这是单位圆圆圆的稳定的连续分布。 如果我们考虑X_ 1 和 X_ 2这两个随机变量的角概率整体变换( adfference) 的数值( difference), 并测试其圆形数( difference), 这相当于对原始变量独立性的测试。 在这项研究中, 我们使用一个灵活的非负式三角测算的圆形分布组合, 包括作为家庭成员的统一圆形分布,, 以比较近距离分配方式评价拟议的近距离分布为近距离的试样。