Causal inference identifies cause-and-effect relationships between variables. While traditional approaches rely on data to reveal causal links, a recently developed method, assimilative causal inference (ACI), integrates observations with dynamical models. It utilizes Bayesian data assimilation to trace causes back from observed effects by quantifying the reduction in uncertainty. ACI advances the detection of instantaneous causal relationships and the intermittent reversal of causal roles over time. Beyond identifying causal connections, an equally important challenge is determining the associated causal influence range (CIR), indicating when causal influences emerged and for how long they persist. In this paper, ACI is employed to develop mathematically rigorous formulations of both forward and backward CIRs at each time. The forward CIR quantifies the temporal impact of a cause, while the backward CIR traces the onset of triggers for an observed effect, thus characterizing causal predictability and attribution of outcomes at each transient phase, respectively. Objective and robust metrics for both CIRs are introduced, eliminating the need for empirical thresholds. Computationally efficient approximation algorithms to compute CIRs are developed, which facilitate the use of closed-form expressions for a broad class of nonlinear dynamical systems. Numerical simulations demonstrate how this forward and backward CIR framework provides new possibilities for probing complex dynamical systems. It advances the study of bifurcation-driven and noise-induced tipping points in Earth systems, investigates the impact from resolving the interfering variables when determining the influence ranges, and elucidates atmospheric blocking mechanisms in the equatorial region. These results have direct implications for science, policy, and decision-making.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员