This paper deals with the geometric numerical integration of gradient flow and its application to optimization. Gradient flows often appear as model equations of various physical phenomena, and their dissipation laws are essential. Therefore, dissipative numerical methods, which are numerical methods replicating the dissipation law, have been studied in the literature. Recently, Cheng, Liu, and Shen proposed a novel dissipative method, the Lagrange multiplier approach, for gradient flows, which is computationally cheaper than existing dissipative methods. Although their efficacy is numerically confirmed in existing studies, the existence results of the Lagrange multiplier approach are not known in the literature. In this paper, we establish some existence results. We prove the existence of the solution under a relatively mild assumption. In addition, by restricting ourselves to a special case, we show some existence and uniqueness results with concrete bounds. As gradient flows also appear in optimization, we further apply the latter results to optimization problems.


翻译:本文涉及梯度流的几何数字整合及其适用于优化。 渐变流通常作为各种物理现象的模型方程式出现, 它们的消散法是不可或缺的。 因此, 文献中已经研究了消散数字方法, 它们是复制消散法的数值方法。 最近, Cheng, Liu和Shen 提出了一个新的消散方法, 即拉格朗乘数方法, 用于梯度流, 其计算成本比现有的消散方法要低。 尽管它们的效力在数字上得到了确认, 文献中并不了解拉格朗乘数方法的存在结果。 在本文中, 我们确立了一些存在结果。 我们证明, 在相对温和的假设下, 存在解决方案的存在。 此外, 我们通过将自身局限于一个特殊的情况, 显示某些存在和独特性的结果, 具体界限。 在优化中也出现梯度流, 我们进一步应用后一种结果来优化问题 。

0
下载
关闭预览

相关内容

在数学优化中,拉格朗日乘数法是一种用于寻找受等式约束的函数的局部最大值和最小值的策略(即,必须满足所选变量值必须完全满足一个或多个方程式的条件)。它以数学家约瑟夫·路易斯·拉格朗日命名。基本思想是将受约束的问题转换为某种形式,以便仍可以应用无约束问题的派生检验。函数的梯度与约束的梯度之间的关系很自然地导致了原始问题的重构,即拉格朗日函数。
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员