The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results.
翻译:对内刑不连续的Galerkin方法的分析, 任何用于解决对Dirac线源的椭圆形和抛物线问题的命令 k 方法的分析都得到了介绍。 对于稳定的状态, 我们通过在L2 规范中和在加权能源规范中得出先验误差估计来证明这种方法的趋同性。 此外, 在任何近似顺序中, 我们证明能源规范中几乎是最佳的局部误差估计。 此外, 在小片线近似情况下,L2 规范中几乎最佳的局部误差估计, 而对于任何多元度则显示L2 规范中次最佳的误差界限。 在有时间依赖的情况下, 半分解和落后的 Euler 完全离散的组合是通过在时间和空间中证明L2 的误差估计数来证实的。 增加椭圆问题的数值结果以支持理论结果 。