As users increasingly turn to large language model (LLM) based web agents to automate online tasks, agents may encounter dark patterns: deceptive user interface designs that manipulate users into making unintended decisions. Although dark patterns primarily target human users, their potentially harmful impacts on LLM-based generalist web agents remain unexplored. In this paper, we present the first study that investigates the impact of dark patterns on the decision-making process of LLM-based generalist web agents. To achieve this, we introduce LiteAgent, a lightweight framework that automatically prompts agents to execute tasks while capturing comprehensive logs and screen-recordings of their interactions. We also present TrickyArena, a controlled environment comprising web applications from domains such as e-commerce, streaming services, and news platforms, each containing diverse and realistic dark patterns that can be selectively enabled or disabled. Using LiteAgent and TrickyArena, we conduct multiple experiments to assess the impact of both individual and combined dark patterns on web agent behavior. We evaluate six popular LLM-based generalist web agents across three LLMs and discover that when there is a single dark pattern present, agents are susceptible to it an average of 41% of the time. We also find that modifying dark pattern UI attributes through visual design changes or HTML code adjustments and introducing multiple dark patterns simultaneously can influence agent susceptibility. This study emphasizes the need for holistic defense mechanisms in web agents, encompassing both agent-specific protections and broader web safety measures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员