Placenta Accreta Spectrum (PAS) is a serious obstetric condition that can be challenging to diagnose with Magnetic Resonance Imaging (MRI) due to variability in radiologists' interpretations. To overcome this challenge, a hybrid 3D deep learning model for automated PAS detection from volumetric MRI scans is proposed in this study. The model integrates a 3D DenseNet121 to capture local features and a 3D Vision Transformer (ViT) to model global spatial context. It was developed and evaluated on a retrospective dataset of 1,133 MRI volumes. Multiple 3D deep learning architectures were also evaluated for comparison. On an independent test set, the DenseNet121-ViT model achieved the highest performance with a five-run average accuracy of 84.3%. These results highlight the strength of hybrid CNN-Transformer models as a computer-aided diagnosis tool. The model's performance demonstrates a clear potential to assist radiologists by providing a robust decision support to improve diagnostic consistency across interpretations, and ultimately enhance the accuracy and timeliness of PAS diagnosis.
翻译:胎盘植入谱系(PAS)是一种严重的产科疾病,由于放射科医师解读存在差异,利用磁共振成像(MRI)进行诊断可能具有挑战性。为克服这一挑战,本研究提出了一种用于从三维MRI扫描中自动检测PAS的混合三维深度学习模型。该模型集成了3D DenseNet121以捕捉局部特征,以及3D Vision Transformer(ViT)以建模全局空间上下文。模型在一个包含1,133例MRI体积的回顾性数据集上进行了开发与评估。为进行比较,还评估了多种三维深度学习架构。在独立测试集上,DenseNet121-ViT模型取得了最佳性能,五次运行的平均准确率达到84.3%。这些结果凸显了混合CNN-Transformer模型作为计算机辅助诊断工具的优势。该模型的性能表明,其具有明确的潜力,可通过提供稳健的决策支持来协助放射科医师,从而提高诊断解读的一致性,并最终提升PAS诊断的准确性与及时性。