Gyroscopic alignment of a fluid occurs when flow structures align with the rotation axis. This often gives rise to highly spatially anisotropic columnar structures that in combination with complex domain boundaries pose challenges for efficient numerical discretizations and computations. We define gyroscopic polynomials to be three-dimensional polynomials expressed in a coordinate system that conforms to rotational alignment. We remap the original domain with radius-dependent boundaries onto a right cylindrical or annular domain to create the computational domain in this coordinate system. We find the volume element expressed in gyroscopic coordinates leads naturally to a hierarchy of orthonormal bases. We build the bases out of Jacobi polynomials in the vertical and generalized Jacobi polynomials in the radial. Because these coordinates explicitly conform to flow structures found in rapidly rotating systems the bases represent fields with a relatively small number of modes. We develop the operator structure for one-dimensional semi-classical orthogonal polynomials as a building block for differential operators in the full three-dimensional cylindrical and annular domains. The differential operators of generalized Jacobi polynomials generate a sparse linear system for discretization of differential operators acting on the gyroscopic bases. This enables efficient simulation of systems with strong gyroscopic alignment.


翻译:流体的陀螺对准是指流动结构与旋转轴对其的现象。这往往会产生高度空间各向异性的柱状结构,与复杂的空间边界相结合,给高效数值离散化和计算带来了挑战。我们定义陀螺多项式为在与旋转对称一致的坐标系中表示的三维多项式。我们将具有半径依赖边界的原始区域重新映射到圆柱形或环形域,以在此坐标系中创建计算域。我们发现,陀螺坐标表达的体积元素自然地导致一系列正交基。我们使用垂直方向的Jacobi多项式和径向方向的广义Jacobi多项式构建基。因为这些坐标明确符合快速旋转系统中发现的流动结构,所以这些基代表着具有相对较少模式的场。我们以一维半经典正交多项式的运算符结构为基础,构建完整三维圆柱形和环形域内的微分运算符。广义Jacobi多项式的微分运算符生成了一个用于向作用于陀螺基的微分运算符离散化的稀疏线性系统。这使得能够有效模拟具有强陀螺对准的系统。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
66+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
41+阅读 · 2020年12月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
66+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
41+阅读 · 2020年12月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员