We introduce SciEvalKit, a unified benchmarking toolkit designed to evaluate AI models for science across a broad range of scientific disciplines and task capabilities. Unlike general-purpose evaluation platforms, SciEvalKit focuses on the core competencies of scientific intelligence, including Scientific Multimodal Perception, Scientific Multimodal Reasoning, Scientific Multimodal Understanding, Scientific Symbolic Reasoning, Scientific Code Generation, Science Hypothesis Generation and Scientific Knowledge Understanding. It supports six major scientific domains, spanning from physics and chemistry to astronomy and materials science. SciEvalKit builds a foundation of expert-grade scientific benchmarks, curated from real-world, domain-specific datasets, ensuring that tasks reflect authentic scientific challenges. The toolkit features a flexible, extensible evaluation pipeline that enables batch evaluation across models and datasets, supports custom model and dataset integration, and provides transparent, reproducible, and comparable results. By bridging capability-based evaluation and disciplinary diversity, SciEvalKit offers a standardized yet customizable infrastructure to benchmark the next generation of scientific foundation models and intelligent agents. The toolkit is open-sourced and actively maintained to foster community-driven development and progress in AI4Science.
翻译:我们介绍SciEvalKit,这是一个统一的基准评测工具包,旨在跨广泛的科学学科和任务能力评估面向科学的AI模型。与通用评估平台不同,SciEvalKit专注于科学智能的核心能力,包括科学多模态感知、科学多模态推理、科学多模态理解、科学符号推理、科学代码生成、科学假设生成以及科学知识理解。它支持从物理、化学到天文学和材料科学等六大主要科学领域。SciEvalKit构建了一个专家级科学基准的基础,这些基准精选自真实世界、特定领域的数据集,确保任务反映真实的科学挑战。该工具包具有灵活、可扩展的评估流水线,支持跨模型和数据集的批量评估,支持自定义模型和数据集集成,并提供透明、可复现且可比较的结果。通过连接基于能力的评估和学科多样性,SciEvalKit为基准评测下一代科学基础模型和智能体提供了一个标准化且可定制的基础设施。该工具包已开源并积极维护,以促进AI4Science领域的社区驱动发展与进步。