While the interpretability of machine learning models is often equated with their mere syntactic comprehensibility, we think that interpretability goes beyond that, and that human interpretability should also be investigated from the point of view of cognitive science. In particular, the goal of this paper is to discuss to what extent cognitive biases may affect human understanding of interpretable machine learning models, in particular of logical rules discovered from data. Twenty cognitive biases are covered, as are possible debiasing techniques that can be adopted by designers of machine learning algorithms and software. Our review transfers results obtained in cognitive psychology to the domain of machine learning, aiming to bridge the current gap between these two areas. It needs to be followed by empirical studies specifically focused on the machine learning domain.


翻译:虽然机器学习模型的可解释性往往等同于其简单的综合理解性,但我们认为,解释性不仅限于此,还应从认知科学的角度对人的可解释性进行调查,特别是,本文件的目的是讨论认知偏见在多大程度上会影响人类对可解释的机器学习模型的理解,特别是从数据中发现的逻辑规则。 20种认知偏见被包括在内,以及机器学习算法和软件设计师可能采用的贬低性技术。我们的审查将认知心理学成果转移到机器学习领域,目的是弥合这两个领域之间的现有差距。随后需要开展专门针对机器学习领域的实证研究。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
112+阅读 · 2020年2月5日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
112+阅读 · 2020年2月5日
Arxiv
19+阅读 · 2018年10月25日
Top
微信扫码咨询专知VIP会员