主题: Interpretable survival gradient boosting models with bagged trees base learners

摘要: 本文提出了一种以bagged trees为基础学习的基于ongradient-boosting的生存分析建模方法,该方法由单变量模型的可加性成分和它们之间的交互作用组成,使得模型具有直观的可解释性。我们表明,我们的方法产生竞争力的结果往往具有预测能力高于全复杂模型。

成为VIP会员查看完整内容
0+
0+

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

论文题目:
Latent Relation Language Models

论文摘要: 在本文中,我们提出了潜在关系语言模型(LRLM),它是一类语言模型,它通过知识图的关系参数化文档中单词和其中出现的实体的联合分布。 该模型具有许多吸引人的属性:它不仅提高了语言建模性能,而且还能够注释实体跨度对于关联文本的后验概率。 实验表明,在基于单词的基准语言模型和结合了知识图谱信息的先前方法上,经验性改进。 定性分析进一步证明了该模型在上下文中学习最佳预测适当关系的能力。

成为VIP会员查看完整内容
5+
0+
Top