Undefined behavior in C often causes devastating security vulnerabilities. One practical mitigation is compartmentalization, which allows developers to structure large programs into mutually distrustful compartments with clearly specified privileges and interactions. In this paper we introduce SECOMP, a compiler for compartmentalized C code that comes with machine-checked proofs guaranteeing that the scope of undefined behavior is restricted to the compartments that encounter it and become dynamically compromised. These guarantees are formalized as the preservation of safety properties against adversarial contexts, a secure compilation criterion similar to full abstraction, and this is the first time such a strong criterion is proven for a mainstream programming language. To achieve this we extend the languages of the CompCert verified C compiler with isolated compartments that can only interact via procedure calls and returns, as specified by cross-compartment interfaces. We adapt the passes and optimizations of CompCert as well as their correctness proofs to this compartment-aware setting. We then use compiler correctness as an ingredient in a larger secure compilation proof that involves several proof engineering novelties, needed to scale formally secure compilation up to a C compiler.


翻译:暂无翻译

1
下载
关闭预览

相关内容

编译器(Compiler),是一种计算机程序,它会将用某种编程语言写成的源代码(原始语言),转换成另一种编程语言(目标语言)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员