Markov chain Monte Carlo (MCMC) simulations have been widely used to generate samples from the complex posterior distribution in Bayesian inferences. However, these simulations often require multiple computations of the forward model in the likelihood function for each drawn sample. This computational burden renders MCMC sampling impractical when the forward model is computationally expensive, such as in the case of partial differential equation models. In this paper, we propose a novel sampling approach called the geometric optics approximation method (GOAM) for Bayesian inverse problems, which entirely circumvents the need for MCMC simulations. Our method is rooted in the problem of reflector shape design, which focuses on constructing a reflecting surface that redirects rays from a source, with a predetermined density, towards a target domain while achieving a desired density distribution. The key idea is to consider the unnormalized Bayesian posterior as the density on the target domain within the optical system and define a geometric optics approximation measure with respect to posterior by a reflecting surface. Consequently, once such a reflecting surface is obtained, we can utilize it to draw an arbitrary number of independent and uncorrelated samples from the posterior measure for Bayesian inverse problems. In theory, we have shown that the geometric optics approximation measure is well-posed. The efficiency and robustness of our proposed sampler, employing the geometric optics approximation method, are demonstrated through several numerical examples provided in this paper.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员