This study connects two methods for modeling reaction times (RTs) in choice tasks: (1) the first-hitting time of a simple diffusion model with a single barrier, representing the cognitive process leading to a response, and (2) Generalized Linear Mixed Models (GLMMs). We achieve this by analyzing RT distributions conditioned on each response alternative. Because certain diffusion model variants yield Inverse Gaussian (IG) and Gamma distributions for first-hitting times, we can justify using these distributions in RT models. Conversely, employing IG and Gamma distributions within GLMMs allows us to infer the underlying cognitive processes. We demonstrate this concept through simulations and apply it to previously published real-world data. Finally, we discuss the scope and potential extensions of our approach.
翻译:本研究将两种建模决策任务中反应时间(RT)的方法联系起来:(1)具有单边界的简单扩散模型的首达时,该模型表征了导致响应的认知过程;(2)广义线性混合模型(GLMM)。我们通过分析以各响应选项为条件的RT分布来实现这一关联。由于某些扩散模型变体会为首达时生成逆高斯(IG)分布和伽马分布,这为在RT模型中采用这些分布提供了理论依据。反之,在GLMM中使用IG分布和伽马分布使我们能够推断潜在的认知过程。我们通过仿真验证了这一概念,并将其应用于先前发表的真实数据。最后,我们讨论了本方法的适用范围及可能的扩展方向。