Hierarchical representations provide powerful and principled approaches for analyzing many musical genres. Such representations have been broadly studied in music theory, for instance via Schenkerian analysis (SchA). Hierarchical music analyses, however, are highly cost-intensive; the analysis of a single piece of music requires a great deal of time and effort from trained experts. The representation of hierarchical analyses in a computer-readable format is a further challenge. Given recent developments in hierarchical deep learning and increasing quantities of computer-readable data, there is great promise in extending such work for an automatic hierarchical representation framework. This paper thus introduces a novel approach, AutoSchA, which extends recent developments in graph neural networks (GNNs) for hierarchical music analysis. AutoSchA features three key contributions: 1) a new graph learning framework for hierarchical music representation, 2) a new graph pooling mechanism based on node isolation that directly optimizes learned pooling assignments, and 3) a state-of-the-art architecture that integrates such developments for automatic hierarchical music analysis. We show, in a suite of experiments, that AutoSchA performs comparably to human experts when analyzing Baroque fugue subjects.
翻译:分层表示为分析多种音乐流派提供了强大且系统化的方法。此类表示在音乐理论中已得到广泛研究,例如通过申克分析法(SchA)。然而,分层音乐分析的成本极高;单首乐曲的分析需要训练有素的专家投入大量时间和精力。将分层分析以计算机可读格式进行表示是另一个挑战。鉴于分层深度学习的最新进展以及计算机可读数据量的日益增长,将此类工作扩展至自动分层表示框架具有巨大潜力。因此,本文提出了一种新颖方法——AutoSchA,该方法扩展了图神经网络(GNN)在分层音乐分析中的最新进展。AutoSchA具有三个关键贡献:1)一种用于分层音乐表示的新图学习框架;2)一种基于节点隔离的新型图池化机制,可直接优化学习到的池化分配;3)一种集成上述进展以实现自动分层音乐分析的先进架构。我们通过一系列实验证明,在分析巴洛克赋格主题时,AutoSchA的表现与人类专家相当。