Aortic aneurysm disease ranks consistently in the top 20 causes of death in the U.S. population. Thoracic aortic aneurysm is manifested as an abnormal bulging of thoracic aortic wall and it is a leading cause of death in adults. From the perspective of biomechanics, rupture occurs when the stress acting on the aortic wall exceeds the wall strength. Wall stress distribution can be obtained by computational biomechanical analyses, especially structural Finite Element Analysis. For risk assessment, probabilistic rupture risk of TAA can be calculated by comparing stress with material strength using a material failure model. Although these engineering tools are currently available for TAA rupture risk assessment on patient specific level, clinical adoption has been limited due to two major barriers: labor intensive 3D reconstruction current patient specific anatomical modeling still relies on manual segmentation, making it time consuming and difficult to scale to a large patient population, and computational burden traditional FEA simulations are resource intensive and incompatible with time sensitive clinical workflows. The second barrier was successfully overcome by our team through the development of the PyTorch FEA library and the FEA DNN integration framework. By incorporating the FEA functionalities within PyTorch FEA and applying the principle of static determinacy, we reduced the FEA based stress computation time to approximately three minutes per case. Moreover, by integrating DNN and FEA through the PyTorch FEA library, our approach further decreases the computation time to only a few seconds per case. This work focuses on overcoming the first barrier through the development of an end to end deep neural network capable of generating patient specific finite element meshes of the aorta directly from 3D CT images.


翻译:暂无翻译

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员