Bayesian geoacoustic inversion problems are conventionally solved by Markov chain Monte Carlo methods or its variants, which are computationally expensive. This paper extends the classic Bayesian geoacoustic inversion framework by deriving important geoacoustic statistics of Bayesian geoacoustic inversion from the multidimensional posterior probability density (PPD) using the mixture density network (MDN) theory. These statistics make it convenient to train the network directly on the whole parameter space and get the multidimensional PPD of model parameters. The present approach provides a much more efficient way to solve geoacoustic inversion problems in Bayesian inference framework. The network is trained on a simulated dataset of surface-wave dispersion curves with shear-wave velocities as labels and tested on both synthetic and real data cases. The results show that the network gives reliable predictions and has good generalization performance on unseen data. Once trained, the network can rapidly (within seconds) give a fully probabilistic solution which is comparable to Monte Carlo methods. It provides an promising approach for real-time inversion.


翻译:Bayesian地球声学自转问题通常由Markov链条Monte Carlo 或其变体解决,这些变体在计算上费用很高。本文扩展了典型的Bayesian地球声学自转框架,利用混合密度网络理论(MDN)从多维远地点概率密度(PPD)中得出了Bayesian地球声学自转的重要地球声学统计数据。这些统计数据使得能够直接对网络进行整个参数空间的培训,并获得模型参数的多维PPD。目前的方法为解决Bayesian推断框架中的地球声学自转问题提供了效率高得多的方法。网络接受了模拟数据数据集的培训,该模拟数据集以剪波速度为标签,并在合成和真实数据案例上进行了测试。结果显示,网络提供了可靠的预测,对不可见数据的概括性表现良好。经过培训后,网络可以迅速(在几秒钟内)给出一个完全可与蒙特卡洛方法相仿的预测性解决方案。它为实时反转提供了很有希望的方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
59+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员