In this article, we present a variational approach to Gaussian and mixture-of-Gaussians assumed filtering. Our method relies on an approximation stemming from the gradient-flow representations of a Kullback--Leibler discrepancy minimization. We outline the general method and show its competitiveness in parameter estimation and posterior representation for two models for which Gaussian approximations typically fail: a multiplicative noise and a multi-modal model.
翻译:在本篇文章中,我们对高斯人和加萨裔混血儿假设的过滤方法提出了一种变通办法。我们的方法依靠的是从Kullback-利伯尔差异最小化的梯度-流量表示得出的近似值。我们概述了一般方法,并展示了它在参数估计和高斯近似值通常无法达到的两个模型的后座代表的竞争力:多倍噪音和多模式模型。</s>