The ability to morph flat sheets into complex 3D shapes is extremely useful for fast manufacturing and saving materials while also allowing volumetrically efficient storage and shipment and a functional use. Direct 4D printing is a compelling method to morph complex 3D shapes out of as-printed 2D plates. However, most direct 4D printing methods require multi-material systems involving costly machines. Moreover, most works have used an open-cell design for shape shifting by encoding a collection of 1D rib deformations, which cannot remain structurally stable. Here, we demonstrate the direct 4D printing of an isotropic single-material system to morph 2D continuous bilayer plates into doubly curved and multimodal 3D complex shapes whose geometry can also be locked after deployment. We develop an inverse-design algorithm that integrates extrusion-based 3D printing of a single-material system to directly morph a raw printed sheet into complex 3D geometries such as a doubly curved surface with shape locking. Furthermore, our inverse-design tool encodes the localized shape-memory anisotropy during the process, providing the processing conditions for a target 3D morphed geometry. Our approach could be used for conventional extrusion-based 3D printing for various applications including biomedical devices, deployable structures, smart textiles, and pop-up Kirigami structures.


翻译:将平板板转换成复杂的 3D 形状的能力对于快速制造和保存材料极为有用,同时允许批量高效的储存和装运以及功能使用。 直接 4D 打印是将复合的 3D 形状从印成的 2D 版的2D 板块中变形的令人信服的方法。 然而,大多数直接 4D 打印方法都需要多材料系统, 涉及昂贵的机器。 此外, 大部分工程都使用开放细胞设计, 将1D 肋骨变形的集合编码成1D 结构, 无法保持结构稳定性。 这里, 我们展示了直接的 4D 4D 打印一个异端单材料系统, 将 2D 连续双层板制成双层板成双向双向型和3D 组合形状, 其几何形状在部署后也可以锁定。 我们开发了一个反称算算法算法, 将一个原始印刷纸板制成的3D 表格直接转换成复杂的 3D 3D 结构, 用于常规的打印机型机型机型机床结构, 3 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月24日
Arxiv
0+阅读 · 2022年6月23日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员