Self-supervised learning (SSL) speech models, which can serve as powerful upstream models to extract meaningful speech representations, have achieved unprecedented success in speech representation learning. However, their effectiveness on non-speech datasets is relatively less explored. In this work, we propose an ensemble framework, with a combination of ensemble techniques, to fuse SSL speech models' embeddings. Extensive experiments on speech and non-speech audio datasets are conducted to investigate the representation abilities of our ensemble method and its single constituent model. Ablation studies are carried out to evaluate the performances of different ensemble techniques, such as feature averaging and concatenation. All experiments are conducted during NeurIPS 2021 HEAR Challenge as a standard evaluation pipeline provided by competition officials. Results demonstrate SSL speech models' strong abilities on various non-speech tasks, while we also note that they fail to deal with fine-grained music tasks, such as pitch classification and note onset detection. In addition, feature ensemble is shown to have great potential on producing more holistic representations, as our proposed framework generally surpasses state-of-the-art SSL speech/audio models and has superior performance on various datasets compared with other teams in HEAR Challenge. Our code is available at https://github.com/tony10101105/HEAR-2021-NeurIPS-Challenge -- NTU-GURA.


翻译:在这项工作中,我们提出一个混合框架,结合各种混合技术,以整合SSL语言模型的嵌入。对语音和非语音音频数据集进行了广泛的实验,以调查我们共同语言方法及其单一成份模型的代表性能力。此外,还开展了多项研究,以评价不同共同语言技术的性能,如特征平均和调和等。所有实验都是在NeurIPS 2021 听力挑战作为竞争官员提供的标准评价管道期间进行的。结果显示了SSL语言模型在各种非语言任务方面的强大能力,同时我们还注意到,它们未能处理精细的音乐任务,如音调分类和注解10开始检测。此外,专题组合显示在制作更整体的语音模型方面潜力巨大,例如特征平均和调和调和等。我们提议的SSLS 2021 听力挑战作为竞争官员提供的标准评价管道进行了所有实验。结果显示SLSL语言模型在各种非语音任务上具有很强的能力,而我们拟议的框架在SEB-H-HLS-CS-SLS-CS-SLS-S-CSLAG-CSLAGS-SLAGR 上普遍地超越了我们现有的高级业绩/SUD-SUDR-SLAD-SDR-SDR-C-SBSDR-SDR-SDR-SBT-S-S-S-S-S-S-S-S-S-S-S-SD-SD-SD-T-SD-SD-SD-SD-SD-SD-SD-SD-SB-S-S-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-SD-SD-SL-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
116+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
116+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员