Many measurement modalities which perform imaging by probing an object pixel-by-pixel, such as via Photoacoustic Microscopy, produce a multi-dimensional feature (typically a time-domain signal) at each pixel. In principle, the many degrees of freedom in the time-domain signal would admit the possibility of significant multi-modal information being implicitly present, much more than a single scalar "brightness", regarding the underlying targets being observed. However, the measured signal is neither a weighted-sum of basis functions (such as principal components) nor one of a set of prototypes (K-means), which has motivated the novel clustering method proposed here. Signals are clustered based on their shape, but not amplitude, via angular distance and centroids are calculated as the direction of maximal intra-cluster variance, resulting in a clustering algorithm capable of learning centroids (signal shapes) that are related to the underlying, albeit unknown, target characteristics in a scalable and noise-robust manner.
翻译:许多测量模式,例如通过光声像像像像像像像像像微镜等进行成像,在像素中产生一个多维特征(通常是时间-域信号),原则上,时间-域信号的多种自由度将承认隐含存在大量多模式信息的可能性,远不止是所观测目标下方的单一标尺“亮度”。然而,测量的信号既不是基础功能(如主元件)的加权和一组原型(K- means)的加权和(K- means),它们促成了此处提议的新型集群方法。信号根据其形状,而不是振荡,通过角距离和小行星,以最大团内差异的方向计算,从而形成能够以可缩放和噪声破坏的方式学习与底部(尽管未知)目标特征相关的中子机器人(信号形状)的集群算法。