Miniature DNA sequencing hardware has begun to succeed in mobile contexts, driving demand for efficient machine learning at the edge. This domain leverages deep learning techniques familiar from speech and time-series analysis for both low-level signal processing and high-level genomic interpretation. Unlike audio, however, nanopore sequencing presents raw data rates over 100X higher, requiring more aggressive compute and memory handling. In this paper, we present a CMOS system-on-chip (SoC) designed for mobile genetic analysis. Our approach combines a multi-core RISC-V processor with tightly coupled accelerators for deep learning and bioinformatics. A hardware/software co-design strategy enables energy-efficient operation across a heterogeneous compute fabric, targeting real-time, on-device genome analysis. This work exemplifies the integration of deep learning, edge computing, and domain-specific hardware to advance next-generation mobile genomics.


翻译:微型DNA测序硬件已开始在移动场景中取得成功,推动了对边缘高效机器学习的需求。该领域利用语音和时间序列分析中常见的深度学习技术,同时用于底层信号处理和高层基因组解读。然而与音频不同,纳米孔测序产生的原始数据速率高出100倍以上,需要更激进的算力和内存处理方案。本文提出一种专为移动基因分析设计的CMOS片上系统(SoC)。我们的方法将多核RISC-V处理器与深度学习及生物信息学的紧耦合加速器相结合。通过硬件/软件协同设计策略,在异构计算架构上实现能效优化的运行,以设备端实时基因组分析为目标。这项工作展示了深度学习、边缘计算与领域专用硬件的融合,以推动下一代移动基因组学的发展。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员