We examine the numerical approximation of a quasilinear stochastic differential equation (SDE) with multiplicative fractional Brownian motion. The stochastic integral is interpreted in the Wick-It\^o-Skorohod (WIS) sense that is well defined and centered for all $H\in(0,1)$. We give an introduction to the theory of WIS integration before we examine existence and uniqueness of a solution to the SDE. We then introduce our numerical method which is based on the theoretical results in \cite{Mishura2008article, Mishura2008} for $H\geq \frac{1}{2}$. We construct explicitly a translation operator required for the practical implementation of the method and are not aware of any other implementation of a numerical method for the WIS SDE. We then prove a strong convergence result that gives, in the non-autonomous case, an error of $O(\Delta t^H)$ and in the non-autonomous case $O(\Delta t^{\min(H,\zeta)})$, where $\zeta$ is a H\"older continuity parameter. We present some numerical experiments and conjecture that the theoretical results may not be optimal since we observe numerically a rate of $\min(H+\frac{1}{2},1)$ in the autonomous case. This work opens up the possibility to efficiently simulate SDEs for all $H$ values, including small values of $H$ when the stochastic integral is interpreted in the WIS sense.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员