Inverse reinforcement learning is the problem of inferring a reward function from an optimal policy or demonstrations by an expert. In this work, it is assumed that the reward is expressed as a reward machine whose transitions depend on atomic propositions associated with the state of a Markov Decision Process (MDP). Our goal is to identify the true reward machine using finite information. To this end, we first introduce the notion of a prefix tree policy which associates a distribution of actions to each state of the MDP and each attainable finite sequence of atomic propositions. Then, we characterize an equivalence class of reward machines that can be identified given the prefix tree policy. Finally, we propose a SAT-based algorithm that uses information extracted from the prefix tree policy to solve for a reward machine. It is proved that if the prefix tree policy is known up to a sufficient (but finite) depth, our algorithm recovers the exact reward machine up to the equivalence class. This sufficient depth is derived as a function of the number of MDP states and (an upper bound on) the number of states of the reward machine. These results are further extended to the case where we only have access to demonstrations from an optimal policy. Several examples, including discrete grid and block worlds, a continuous state-space robotic arm, and real data from experiments with mice, are used to demonstrate the effectiveness and generality of the approach.


翻译:逆强化学习是从最优策略或专家演示中推断奖励函数的问题。本文假设奖励被表达为一个奖励机,其状态转移依赖于与马尔可夫决策过程(MDP)状态相关联的原子命题。我们的目标是利用有限信息识别真实的奖励机。为此,我们首先引入前缀树策略的概念,该策略将动作分布与MDP的每个状态以及每个可达的原子命题有限序列相关联。然后,我们刻画了在给定前缀树策略下可识别的奖励机等价类。接着,我们提出一种基于SAT的算法,该算法利用从前缀树策略中提取的信息来求解奖励机。我们证明,如果前缀树策略在足够(但有限)的深度内已知,我们的算法能够精确地恢复出该等价类内的奖励机。这一充分深度被推导为MDP状态数和奖励机状态数(的一个上界)的函数。这些结果进一步扩展到我们仅能访问最优策略演示的情况。多个示例,包括离散网格与积木世界、连续状态空间的机械臂,以及来自小鼠实验的真实数据,被用于展示该方法的有效性和普适性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
126+阅读 · 2020年9月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员