The covariance of a stationary process $X$ is diagonalized by a Fourier transform. It does not take into account the complex Fourier phase and defines Gaussian maximum entropy models. We introduce a general family of phase harmonic covariance moments, which rely on complex phases to capture non-Gaussian properties. They are defined as the covariance of $\hat{H} (L X)$, where $L$ is a complex linear operator and $\hat{H} $ is a non-linear phase harmonic operator which multiplies the phase of each complex coefficient by integers. The operator $\hat{H} (L X)$ can also be calculated from rectifiers, which relates $\hat{H} (L X)$ to neural network coefficients. If $L$ is a Fourier transform then the covariance is a sparse matrix whose non-zero off-diagonal coefficients capture dependencies between frequencies. These coefficients have similarities with high order moment, but smaller statistical variabilities because $\hat{H} (L X)$ is Lipschitz. If $L$ is a complex wavelet transform then off-diagonal coefficients reveal dependencies across scales, which specify the geometry of local coherent structures. We introduce maximum entropy models conditioned by these wavelet phase harmonic covariances. The precision of these models is numerically evaluated to synthesize images of turbulent flows and other stationary processes.


翻译:固定过程的共差因 Fleier 变换而变异。 它没有考虑到复杂的 Fleier 阶段, 并且定义了 Gaussian 最大恒温模型。 我们引入了一个共差阶段的普通组合, 共差时, 依靠复杂的阶段来捕捉非Gaussian 属性。 它们被定义为 $\ h{H} (L X) 的共差, 美元是一个复杂的线性操作员, $\ h} 是一个非线性相位调控操作员, 美元是一个非线性级调和 美元 。 这些系数与高顺序时间是相似的, 但是由于 $\ h} 将每个复杂系数的相乘。 操作员 $\ h} (L X) (L X) 也可以从正弦化器中计算出一个共差点, 它将 $\hhat{H} (L X) 美元 和 Neconomicalal mologismational resmation resmational restitual resmational resmational resmational resmational resmissional restiaxl resmations. extiax exml) exmational exml. ex exml. exitalxxxxxxxxxxxxxxmllxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

最大熵模型(maximun entropy model)由最大熵原理推导实现,而最大熵原理损失概率模型学习的一个准则。最大熵原理认为,学习概率模型是,所有可能的概率模型(分布)中,熵最大的模型是最好的模型。最大熵原理也可以表述为在满足约束条件的模型集合中取熵最大的模型
迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员