The Stokes-Brinkman equations model fluid flow in highly heterogeneous porous media. In this paper, we consider the numerical solution of the Stokes-Brinkman equations with stochastic permeabilities, where the permeabilities in subdomains are assumed to be independent and uniformly distributed within a known interval. We employ a truncated anchored ANOVA decomposition alongside stochastic collocation to estimate the moments of the velocity and pressure solutions. Through an adaptive procedure selecting only the most important ANOVA directions, we reduce the number of collocation points needed for accurate estimation of the statistical moments. However, for even modest stochastic dimensions, the number of collocation points remains too large to perform high-fidelity solves at each point. We use reduced basis methods to alleviate the computational burden by approximating the expensive high-fidelity solves with inexpensive approximate solutions on a low-dimensional space. We furthermore develop and analyze rigorous a posteriori error estimates for the reduced basis approximation. We apply these methods to 2D problems considering both isotropic and anisotropic permeabilities.


翻译:Stokes- Brinkman 方程式在高度多样化的多孔媒体中的模型流体流。 在本文中, 我们考虑Stokes- Brinkman 方程式中带有随机性常识的同化点数的数值解决方案, 该方程式假定子磁性在已知的间隔内是独立和统一分布的。 我们使用一个支离破碎的固定的 ANOVA 分解法, 并同时使用随机相近的同化法来估计速度和压力解决方案的时间。 我们通过一个只选择最重要的 ANOVA 方向的适应程序, 我们减少了精确估计统计时点所需的同化点数。 然而, 即使是小的相异性尺寸, 相近点数仍然太大, 无法在每一个点上执行高不易变性解决方案。 我们使用降低基数的方法来减轻计算负担, 方法是在低度空间以低廉的近似解决方案对昂贵的高纤维解决方案进行近似。 我们进一步开发并分析精确的后种误差估计, 以降低基点近似值。 我们将这些方法应用于2D 问题, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关VIP内容
相关资讯
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员