We study a statistical method to estimate the optimal value, and the optimality gap of a given solution for stochastic optimization as an assessment of the solution quality. Our approach is based on bootstrap aggregating, or bagging, resampled sample average approximation (SAA). We show how this approach leads to valid statistical confidence bounds for non-smooth optimization. We also demonstrate its statistical efficiency and stability that are especially desirable in limited-data situations, and compare these properties with some existing methods. We present our theory that views SAA as a kernel in an infinite-order symmetric statistic, which can be approximated via bagging. We substantiate our theoretical findings with numerical results.
翻译:我们研究一种统计方法,以估计最佳值和最佳性差,作为对解决方案质量的评估。我们的方法基于靴套集,或包装,再抽样样本平均近似值(SAA)。我们展示了这种方法如何导致有效的统计信任度,从而实现非抽吸优化。我们还展示了其统计效率和稳定性,这在数据有限的情况下特别可取,并将这些特性与一些现有方法进行比较。我们提出我们的理论,认为SAA是无限顺序对称统计的内核,可以通过包套进行近似。我们用数字结果来证实我们的理论结论。