This work introduces a parametric simulation-free reduced order model for incompressible flows undergoing a Hopf bifurcation, leveraging the parametrisation method for invariant manifolds. Unlike data-driven approaches, this method operates directly on the governing equations, eliminating the need for full-order simulations. The proposed model is computed at a single value of the bifurcation parameter yet remains valid over a range of values. The approach systematically constructs an invariant manifold and embedded dynamics, providing an accurate and efficient reduction of the original system. The ability to capture pre-critical steady states, the bifurcation point, and post-critical limit cycle oscillations is demonstrated by a strong agreement between the reduced order model and full order simulations, while achieving significant computational speed-up.
翻译:本研究提出了一种针对经历Hopf分岔的不可压缩流动的参量化免仿真降阶模型,该方法利用不变流形的参数化方法。与数据驱动方法不同,此技术直接基于控制方程进行运算,无需全阶仿真。所提出的模型仅需在分岔参数的单一取值下计算,即可在参数范围内保持有效性。该方法系统性地构建不变流形及嵌入动力学,实现对原始系统的精确高效降阶。通过降阶模型与全阶仿真结果的高度吻合,证明了该模型能够准确捕捉前临界稳态、分岔点及后临界极限环振荡,同时实现了显著的计算加速。