This study focuses on long-term forecasting (LTF) on continuous-time dynamic graph networks (CTDGNs), which is important for real-world modeling. Existing CTDGNs are effective for modeling temporal graph data due to their ability to capture complex temporal dependencies but perform poorly on LTF due to the substantial requirement for historical data, which is not practical in most cases. To relieve this problem, a most intuitive way is data augmentation. In this study, we propose \textbf{\underline{U}ncertainty \underline{M}asked \underline{M}ix\underline{U}p (UmmU)}: a plug-and-play module that conducts uncertainty estimation to introduce uncertainty into the embedding of intermediate layer of CTDGNs, and perform masked mixup to further enhance the uncertainty of the embedding to make it generalize to more situations. UmmU can be easily inserted into arbitrary CTDGNs without increasing the number of parameters. We conduct comprehensive experiments on three real-world dynamic graph datasets, the results demonstrate that UmmU can effectively improve the long-term forecasting performance for CTDGNs.


翻译:本研究关注准确建模连续时间动态图网络中的长期预测问题。现存的连续时间动态图网络可以很好地建模时态图数据,但在长期预测方面表现不佳,因为需要大量历史数据,这在实践中不可行。为了缓解这个问题,最直观的方法是进行数据增强。本研究提出了“不确定性掩蔽混合”(UmmU):这是一个即插即用的模块,可以对中间层嵌入进行不确定性估计,引入不确定性,然后进行掩蔽混合,进一步增强嵌入的不确定性,使其推广到更多情况。而且,UmmU可以轻易插入到任意的连续时间动态图网络中,而不增加参数数量。我们在三个真实的动态图数据集上进行了全面的实验,结果表明,UmmU可以有效提高连续时间动态图网络的长期预测性能。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
107+阅读 · 2020年12月21日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
107+阅读 · 2020年12月21日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员