Accurate and complete terrain maps enhance the awareness of autonomous robots and enable safe and optimal path planning. Rocks and topography often create occlusions and lead to missing elevation information in the Digital Elevation Map (DEM). Currently, these occluded areas are either fully avoided during motion planning or the missing values in the elevation map are filled-in using traditional interpolation, diffusion or patch-matching techniques. These methods cannot leverage the high-level terrain characteristics and the geometric constraints of line of sight we humans use intuitively to predict occluded areas. We introduce a self-supervised learning approach capable of training on real-world data without a need for ground-truth information to reconstruct the occluded areas in the DEMs. We accomplish this by adding artificial occlusion to the incomplete elevation maps constructed on a real robot by performing ray casting. We first evaluate a supervised learning approach on synthetic data for which we have the full ground-truth available and subsequently move to several real-world datasets. These real-world datasets were recorded during exploration of both structured and unstructured terrain with a legged robot, and additionally in a planetary scenario on Lunar analogue terrain. We state a significant improvement compared to the baseline methods both on synthetic terrain and for the real-world datasets. Our neural network is able to run in real-time on both CPU and GPU with suitable sampling rates for autonomous ground robots. We motivate the applicability of reconstructing occlusion in elevation maps with preliminary motion planning experiments.

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
100+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
92+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
90+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
23+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
0+阅读 · 3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
3+阅读 · 3月29日
IEEE TII Call For Papers
CCF多媒体专委会
1+阅读 · 3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
0+阅读 · 2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2月24日
Arxiv
12+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2021年7月18日
Few-shot Learning: A Survey
Arxiv
340+阅读 · 2019年4月10日
Arxiv
14+阅读 · 2018年2月4日
小贴士
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
0+阅读 · 3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
3+阅读 · 3月29日
IEEE TII Call For Papers
CCF多媒体专委会
1+阅读 · 3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
0+阅读 · 2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员