Differential privacy is typically ensured by perturbation with additive noise that is sampled from a known distribution. Conventionally, independent and identically distributed (i.i.d.) noise samples are added to each coordinate. In this work, propose to add noise which is independent, but not identically distributed (i.n.i.d.) across the coordinates. In particular, we study the i.n.i.d. Gaussian and Laplace mechanisms and obtain the conditions under which these mechanisms guarantee privacy. The optimal choice of parameters that ensure these conditions are derived theoretically. Theoretical analyses and numerical simulations show that the i.n.i.d. mechanisms achieve higher utility for the given privacy requirements compared to their i.i.d. counterparts.


翻译:通过从已知分布中取样的添加噪音的干扰,通常可以确保不同的隐私。在每一个坐标上添加了《公约》、独立和同样分布的(即d)噪音样本。在这项工作中,建议增加独立但并非相同分布的(即n.i.d.)在坐标上方的噪音。特别是,我们研究i.n.i.d.Gaussian和Laplace机制,并获得这些机制保障隐私的条件。最佳选择参数以确保从理论上推断出这些条件。理论分析和数字模拟表明,i.n.i.d.机制比i.d.机制对特定隐私要求的效用更高。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员