The sliced Wasserstein (SW) distance has been widely recognized as a statistically effective and computationally efficient metric between two probability measures. A key component of the SW distance is the slicing distribution. There are two existing approaches for choosing this distribution. The first approach is using a fixed prior distribution. The second approach is optimizing for the best distribution which belongs to a parametric family of distributions and can maximize the expected distance. However, both approaches have their limitations. A fixed prior distribution is non-informative in terms of highlighting projecting directions that can discriminate two general probability measures. Doing optimization for the best distribution is often expensive and unstable. Moreover, designing the parametric family of the candidate distribution could be easily misspecified. To address the issues, we propose to design the slicing distribution as an energy-based distribution that is parameter-free and has the density proportional to an energy function of the projected one-dimensional Wasserstein distance. We then derive a novel sliced Wasserstein metric, energy-based sliced Waserstein (EBSW) distance, and investigate its topological, statistical, and computational properties via importance sampling, sampling importance resampling, and Markov Chain methods. Finally, we conduct experiments on point-cloud gradient flow, color transfer, and point-cloud reconstruction to show the favorable performance of the EBSW.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员