We introduce Human Motion Unlearning and motivate it through the concrete task of preventing violent 3D motion synthesis, an important safety requirement given that popular text-to-motion datasets (HumanML3D and Motion-X) contain from 7\% to 15\% violent sequences spanning both atomic gestures (e.g., a single punch) and highly compositional actions (e.g., loading and swinging a leg to kick). By focusing on violence unlearning, we demonstrate how removing a challenging, multifaceted concept can serve as a proxy for the broader capability of motion "forgetting." To enable systematic evaluation of Human Motion Unlearning, we establish the first motion unlearning benchmark by automatically filtering HumanML3D and Motion-X datasets to create distinct forget sets (violent motions) and retain sets (safe motions). We introduce evaluation metrics tailored to sequential unlearning, measuring both suppression efficacy and the preservation of realism and smooth transitions. We adapt two state-of-the-art, training-free image unlearning methods (UCE and RECE) to leading text-to-motion architectures (MoMask and BAMM), and propose Latent Code Replacement (LCR), a novel, training-free approach that identifies violent codes in a discrete codebook representation and substitutes them with safe alternatives. Our experiments show that unlearning violent motions is indeed feasible and that acting on latent codes strikes the best trade-off between violence suppression and preserving overall motion quality. This work establishes a foundation for advancing safe motion synthesis across diverse applications. Website: https://www.pinlab.org/hmu.
翻译:本文提出人体运动遗忘学习,并通过防止暴力三维运动合成的具体任务阐明其动机。鉴于主流文本到运动数据集(HumanML3D与Motion-X)包含7%至15%的暴力序列,涵盖原子化动作(如单次挥拳)与高度组合性行为(如抬腿蓄力踢击),该安全需求至关重要。通过聚焦暴力遗忘,我们论证了如何通过移除这一复杂多维概念,为广义运动“遗忘”能力提供代理验证。为系统评估人体运动遗忘学习,我们通过自动筛选HumanML3D与Motion-X数据集,构建首个运动遗忘基准,分别创建遗忘集(暴力动作)与保留集(安全动作)。我们设计了针对序列遗忘的评估指标,同时衡量抑制效能与运动真实感、流畅过渡的保持能力。本文将两种先进的免训练图像遗忘方法(UCE与RECE)适配于主流文本到运动架构(MoMask与BAMM),并提出潜在代码替换——一种新颖的免训练方法,通过识别离散码本表征中的暴力代码并替换为安全替代码。实验表明,暴力运动遗忘确实可行,且在潜在代码层面进行操作能最佳平衡暴力抑制与整体运动质量保持。本研究为推进跨领域安全运动合成奠定了理论基础。项目网站:https://www.pinlab.org/hmu。