Current applications of self-supervised learning to wireless channel representation often borrow paradigms developed for text and image processing, without fully addressing the unique characteristics and constraints of wireless communications. To bridge this gap, we introduce ContraWiMAE, Wireless Contrastive Masked Autoencoder, a transformer-based foundation model that unifies masked reconstruction and masked contrastive learning for wireless channel representation. Our key innovation is a new wireless-inspired contrastive objective that exploits the inherent characteristics of wireless environment, including noise, fading, and partial observability, as natural augmentation. Through extensive evaluation on unseen scenarios and conditions, we demonstrate our method's effectiveness in multiple downstream tasks, including cross-frequency beam selection, line-of-sight detection, and channel estimation. ContraWiMAE exhibits superior linear separability and adaptability in diverse wireless environments, demonstrating exceptional data efficiency and competitive performance compared with supervised baselines under challenging conditions. Comparative evaluations against a state-of-the-art wireless channel foundation model confirm the superior performance and data efficiency of our approach, highlighting its potential as a powerful baseline for future research in self-supervised wireless channel representation learning. To foster further work in this direction, we release the model weights and training pipeline for ContraWiMAE.


翻译:当前将自监督学习应用于无线信道表征的研究常借鉴文本与图像处理范式,未能充分考量无线通信特有的性质与约束。为弥合这一差距,本文提出ContraWiMAE(无线对比掩码自编码器)——一种基于Transformer的基础模型,通过融合掩码重建与掩码对比学习实现无线信道表征的统一建模。我们的核心创新在于提出一种受无线通信启发的对比学习目标,该目标将无线环境固有特性(包括噪声、衰落与部分可观测性)作为自然增强手段加以利用。通过对未见场景与条件的大规模评估,我们验证了该方法在跨频段波束选择、视距检测及信道估计等多个下游任务中的有效性。ContraWiMAE在不同无线环境中展现出优异的线性可分性与适应能力,在挑战性条件下相比监督基线方法具有显著的数据效率优势与可比性能。与当前最先进的无线信道基础模型对比评估表明,本方法在性能与数据效率方面均具有优越性,凸显其作为自监督无线信道表征学习未来研究的强有力基线的潜力。为促进该方向研究,我们公开了ContraWiMAE的模型权重与训练流程。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员