Recovering a signal (function) from finitely many binary or Fourier samples is one of the core problems in modern medical imaging, and by now there exist a plethora of methods for recovering a signal from such samples. Examples of methods, which can utilise wavelet reconstruction, include generalised sampling, infinite-dimensional compressive sensing, the parameterised-background data-weak (PBDW) method etc. However, for any of these methods to be applied in practice, accurate and fast modelling of an $N \times M$ section of the infinite-dimensional change-of-basis matrix between the sampling basis (Fourier or Walsh-Hadamard samples) and the wavelet reconstruction basis is paramount. In this work, we derive an algorithm, which bypasses the $NM$ storage requirement and the $\mathcal{O}(NM)$ computational cost of matrix-vector multiplication with this matrix when using Walsh-Hadamard samples and wavelet reconstruction. The proposed algorithm computes the matrix-vector multiplication in $\mathcal{O}(N\log N)$ operations and has a storage requirement of $\mathcal{O}(2^q)$, where $N=2^{dq} M$, (usually $q \in \{1,2\}$) and $d=1,2$ is the dimension. As matrix-vector multiplications is the computational bottleneck for iterative algorithms used by the mentioned reconstruction methods, the proposed algorithm speeds up the reconstruction of wavelet coefficients from Walsh-Hadamard samples considerably.


翻译:从有限的许多二进制或Fourier样本中恢复信号(功能)是现代医学成像中的核心问题之一,而且现在已经有了从这些样本中恢复信号的多种方法。方法的例子可以使用波子重建,包括一般取样、无限的尺寸压缩遥感、参数化后地数据网(PBDW)方法等。然而,为了在实际中应用任何这些方法,精确和迅速地模拟在取样基础(Fourier 或 Walsh-Hadamard 样本)和波盘重建基础之间无限维维值变化矩阵M美元(MM)的一部分。在这项工作中,我们得出一种算法,绕过$MMM$的存储要求,在使用 Walsh- Hadamard 样本和波盘重建时,矩阵-xmexixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月21日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员