We devise a data structure that can answer shortest path queries for two query points in a polygonal domain $P$ on $n$ vertices. For any $\varepsilon > 0$, the space complexity of the data structure is $O(n^{10+\varepsilon })$ and queries can be answered in $O(\log n)$ time. Alternatively, we can achieve a space complexity of $O(n^{9+\varepsilon })$ by relaxing the query time to $O(\log^2 n)$. This is the first improvement upon a conference paper by Chiang and Mitchell from 1999. They present a data structure with $O(n^{11})$ space complexity and $O(\log n)$ query time. Our main result can be extended to include a space-time trade-off. Specifically, we devise data structures with $O(n^{9+\varepsilon}/\hspace{1pt} \ell^{4 + O(\varepsilon )})$ space complexity and $O(\ell \log^2 n )$ query time, for any integer $1 \leq \ell \leq n$. Furthermore, we present improved data structures with $O(\log n)$ query time for the special case where we restrict one (or both) of the query points to lie on the boundary of $P$. When one of the query points is restricted to lie on the boundary, and the other query point is unrestricted, the space complexity becomes $O(n^{6+\varepsilon})$. When both query points are on the boundary, the space complexity is decreased further to $O(n^{4+\varepsilon })$, thereby improving an earlier result of Bae and Okamoto.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员