Quantum phase transitions in Rydberg atom arrays present significant opportunities for studying many-body physics, yet distinguishing between different ordered phases without explicit order parameters remains challenging. We present a resource-efficient quantum machine learning approach combining classical shadow tomography with variational quantum circuits (VQCs) for binary phase classification of Z2 and Z3 ordered phases. Our pipeline processes 500 randomized measurements per 51-atom chain state, reconstructs shadow operators, performs PCA dimensionality reduction (514 features), and encodes features using angle embedding onto a 2-qubit parameterized circuit. The circuit employs RY-RZ angle encoding, strong entanglement via all-to-all CZ gates, and a minimal 2-parameter ansatz achieving depth 7. Training via simultaneous perturbation stochastic approximation (SPSA) with hinge loss converged in 120 iterations. The model achieved 100% test accuracy with perfect precision, recall, and F1 scores, demonstrating that minimal quantum resources suffice for high-accuracy phase classification. This work establishes pathways for quantum-enhanced condensed matter physics on near-term quantum devices.


翻译:里德堡原子阵列中的量子相变为研究多体物理提供了重要机遇,然而在没有显式序参量的情况下区分不同有序相仍具挑战性。本文提出一种资源高效的量子机器学习方法,将经典影子层析成像与变分量子电路相结合,用于Z2和Z3有序相的二元相分类。我们的处理流程对每个51原子链态进行500次随机测量,重构影子算符,执行主成分分析降维(514个特征),并通过角度嵌入将特征编码到2量子比特参数化电路中。该电路采用RY-RZ角度编码、通过全连接CZ门实现强纠缠,以及仅含2个参数且深度为7的极简拟设。通过基于铰链损失的同时扰动随机逼近算法进行训练,经120次迭代后收敛。该模型在测试集上达到100%准确率,并取得完美的精确率、召回率和F1分数,证明极少量子资源即可实现高精度相分类。本研究为在近期量子设备上实现量子增强的凝聚态物理研究建立了可行路径。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员